Likelihood-based inference for asymmetric stochastic volatility models

نویسندگان

  • Francesco Bartolucci
  • Giovanni De Luca
چکیده

A likelihood approach for 0tting asymmetric stochastic volatility models is proposed. It is 0rst shown that, using a quadrature method, the likelihood of these models may be approximated, with the required level of accuracy, by a function that may be easily evaluated using matrix calculus along with its 0rst and second derivatives. The approximated likelihood may be maximized using a standard Newton–Raphson algorithm, and con0dence intervals for the parameters may be computed. Moreover, the hypothesis of an asymmetric response of volatility to shocks in the series may be simply tested. Before applying the procedure to real data, a simulation study investigates the reliability of the parameter estimates. c © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

متن کامل

Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models

In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with ...

متن کامل

Likelihood-based comparison of stable Paretian and competing models: Evidence from daily exchange rates

Considering alternative models for exchange rates has always been a central issue in applied research. Despite this fact, formal likelihood-based comparisons of competing models are extremely rare. In this paper, we apply the Bayesian marginal likelihood concept to compare GARCH, stable, stable GARCH, stochastic volatility, and a new stable Paretian stochastic volatility model for seven major c...

متن کامل

Frontiers in Time Series and Financial Econometrics: An Overview

Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...

متن کامل

Multivariate Stochastic Volatility: a Review

The literature on multivariate stochastic volatility (MSV) models has developed significantly over the last few years. This paper reviews the substantial literature on specification, estimation, and evaluation of MSV models. A wide range of MSV models is presented according to various categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models, and (iv) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2003